Exercise 70

After an antibiotic tablet is taken, the concentration of the antibiotic in the bloodstream is modeled by the function

$$
C(t)=8\left(e^{-0.4 t}-e^{-0.6 t}\right)
$$

where the time t is measured in hours and C is measured in $\mu \mathrm{g} / \mathrm{mL}$. What is the maximum concentration of the antibiotic during the first 12 hours?

Solution

The domain of the function is $0 \leq t \leq 12$. Take the derivative.

$$
\begin{aligned}
C^{\prime}(t) & =\frac{d}{d t} 8\left(e^{-0.4 t}-e^{-0.6 t}\right) \\
& =8\left[\frac{d}{d t}\left(e^{-0.4 t}\right)-\frac{d}{d t}\left(e^{-0.6 t}\right)\right] \\
& =8\left[\left(e^{-0.4 t}\right) \cdot \frac{d}{d t}(-0.4 t)-\left(e^{-0.6 t}\right) \cdot \frac{d}{d t}(-0.6 t)\right] \\
& =8\left[\left(e^{-0.4 t} \cdot(-0.4)-\left(e^{-0.6 t}\right) \cdot(-0.6 t)\right]\right. \\
& =8\left(-0.4 e^{-0.4 t}+0.6 e^{-0.6 t}\right) \\
& =-3.2 e^{-0.4 t}+4.8 e^{-0.6 t}
\end{aligned}
$$

Set $C^{\prime}(t)=0$ and solve for t.

$$
\begin{gathered}
-3.2 e^{-0.4 t}+4.8 e^{-0.6 t}=0 \\
4.8 e^{-0.6 t}=3.2 e^{-0.4 t} \\
\frac{4.8}{3.2}=e^{0.2 t} \\
\ln \frac{4.8}{3.2}=\ln e^{0.2 t} \\
\ln \frac{4.8}{3.2}=0.2 t \ln e \\
t=\frac{1}{0.2} \ln \frac{4.8}{3.2} \approx 2.02733 \text { hours }
\end{gathered}
$$

$t=(1 / 0.2) \ln (4.8 / 3.2)$ is within the interval $0 \leq t \leq 12$, so evaluate the function here.

$$
C\left(\frac{1}{0.2} \ln \frac{4.8}{3.2}\right)=8\left[e^{-0.4\left(\frac{1}{0.2} \ln \frac{4.8}{3.2}\right)}-e^{-0.6\left(\frac{1}{0.2} \ln \frac{4.8}{3.2}\right)}\right] \approx 1.18519 \frac{\mu \mathrm{~g}}{\mathrm{~mL}} \quad \text { (absolute maximum) }
$$

Evaluate the function at the endpoints.

$$
\begin{aligned}
C(0) & =8\left[e^{-0.4(0)}-e^{-0.6(0)}\right]=0 \\
C(12) & =8\left[e^{-0.4(12)}-e^{-0.6(12)}\right] \approx 0.0598653
\end{aligned}
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $0 \leq t \leq 12$. The graph below illustrates these results.

